Der Goldene Schnitt ist ein faszinierendes mathematisches Verhältnis, das in vielen Bereichen des Lebens (Körpermaße), der Kunst (Mona Lisa), Bildhauerei (Michelangelos David), der Architektur (Altes Leipziger Rathaus) und der Natur (Nautilus) auftaucht. In dieser Unterrichtseinheit für den Mathematikunterricht der Sekundarstufe I setzen sich die Schülerinnen und Schüler intensiv mit dem Thema "Goldener Schnitt" auseinander. Der erste Teil der Einheit vermittelt eine grundlegende Einführung in die mathematischen Aspekte des Goldenen Schnitts. Mithilfe verschiedener Aufgaben entdecken die Lernenden, in welchem Zusammenhang der Goldene Schnitt zur Mathematik steht.
Im zweiten Teil liegt der Fokus auf der Architektur. Die Schülerinnen und Schüler recherchieren nach Gebäuden, die dem Goldenen Schnitt entsprechen, und überprüfen am Beispiel des Alten Rathauses in Leipzig, inwieweit es nach diesen Prinzipien errichtet wurde.
Im dritten Teil wird das Thema auf das Steinmetz-Handwerk übertragen, wodurch den Lernenden eine praxisnahe und lebensweltbezogene Perspektive geboten wird. Hier setzen sie sich auch mit der Fibonacci-Folge auseinander und untersuchen Denkmäler auf die Anwendung des Goldenen Schnitts im Handwerk.
Durch praxisorientierte Textaufgaben wird das Verständnis des Themas weiter vertieft. Ein begleitendes Informationsblatt unterstützt die Recherchearbeit. Zur Verfügung stehenden GeoGebra-Dateien erleichtern das Verständnis und bieten eine weitere Annäherung an das Thema. Diese Dateien stehen zum Download auf der Materialseite zur Verfügung.
Neben dem Informationsblatt beinhalten die Arbeitsblätter teilweise Erklärungen und daran gekoppelte Aufgaben. Grundsätzlich wird auf das Informationsblatt als Quelle verwiesen.
Die Arbeitsblätter bauen aufeinander auf, so dass die Schülerinnen und Schüler mit dem letzten Arbeitsblatt eigenständig den Goldenen Schnitt umsetzen können sollten.
Die Unterrichtseinheit ist für einen Zeitraum von 12 bis 16 Unterrichtsstunden angelegt, wobei pro Woche ein Arbeitsblatt bearbeitet werden kann. Die Bearbeitungszeit kann sich durch die eigenständige Recherchearbeit mit dem Informationsblatt um ein bis zwei Wochen verlängern. Differenzierte Aufgabenstellungen bieten den Lernenden verschiedene Zugänge zum Thema und unterstützen sie in ihrer individuellen Herangehensweise.
Der Unterrichtsverlauf folgt einer Struktur, die in drei Phasen unterteilt ist: Plenumsphase, Übungsphase und Rückmeldungsphase. Alternativ können die Aufgaben auch in Wochenplänen eingesetzt werden, was eine flexible Gestaltung des Unterrichts ermöglicht. Im Verlaufsplan werden die Phasen ergänzt, in denen die Lehrkraft die Inhalte präsentiert und den Lernenden Raum gibt, Fragen zu stellen. Die verbleibende Zeit ist für eigenständiges und selbstverantwortliches Lernen vorgesehen. Diese Phasen werden nicht gesondert aufgeführt.